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LONGITUDINAL IMPACT OF TWO MUTUALLY
PLASTICALLY-DEFORMABLE MISSILES
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Abstract—This paper develops an improved theory of large plastic deformation of metallic cylindrical flat ended
missiles striking each other with prescribed launch velocities and compares results with experimental data.
The groups of comparison studies which have been used for comparison with this analysis are:
(a) G.I. Taylor and A. C. Whiffin
(b) E. H. Lee, S. T. Tupper, A. C. Whiffin and H. L. D. Pugh
(c) N. Davids, C. Graberek, D. Raftopoulos and A. Ricchiazzi
It has been found from the above comparisons that the results given in this paper show that the theory predicts
large deformation of the aforesaid missiles satisfactorily for low and intermediate velocities.

NOTATION*
Ao initial, undeformed cross-sectional area
A; variable cross-sectional area
c, elastic wave velocity
¢; relative wave front velocity
Cy absolute velocity of plastic boundary
d diameter
dm mass element undergoing plastic deformation during dr
dM mass of the undisturbed part
de time interval
dr arbitrary velocity increment
de, change of velocity in rear part
dXx undisturbed length
F reaction force
! net force on element
j index, successive states
! length of missile
t time
v particle velocity
vy impact velocity
o* common velocity of the plastically-deformed part
x* longitudinal coordinate of plane dividing the missiles
X; longitudinal coordinate of rigid-plastic boundary
X coordinate of left end of missile
£ axial strain
p mass density of missile material
[ stress
o, yield-stress magnitude

1. INTRODUCTION

THE purpose of this investigation is to study the deformation, motion and material behavior
of metallic missiles when they strike each other with known launch velocities.

* Superscripts are used to identify symbols; [ denotes quantities of left missile, while r denotes quantities of
right missile.
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Specifically, two main problems were investigated. First, cylindrical flat-ended missiles,
of equal cross section and equal mass, strike each other with prescribed launch velocities,
undergoing large plastic deformation according to some assumed material constitutive
behavior. The analysis of this investigation is based on assumptions that Sir Geoffrey L
Taylor [1] introduced for flat-ended projectiles striking rigid targets. Then the developed
theory is extended to be applied to missiles having unequal masses.

The method of approach which has been used for this problem is the one which is
known as “Direct Analysis.” It is the method in which the analysts do not derive the
governing differential equations, but use the physical laws, the assumed material behavior,
the kinematical relations, etc., directly in a numerical computer approach, from which
results are acquired.

The results calculated in this work compare favourably with experimental data of

Refs. [2-5].

2. DESCRIPTION OF THE PROBLEM AND ASSUMPTIONS

In the analysis of this problem the following theoretical model is assumed.

When two cylindrical missiles of equal cross section strike each other at normal
obliquity, it is assumed that the parts of the missiles which are in contact or are close to the
contact surface shall be permanently plastically deformed, while the rear parts of the
missiles shall remain rigid. This model is pictured in Fig. 1{A) and 1(B). Figure 1(A) shows
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F1G. I. Cylindrical missiles striking each other.

two cylindrical missiles traveling with impact velocities v} and v} just before they strike
each other. Figure 1(B) depicts the missiles during their collision. It can be seen in this
figure that each missile is divided into two main parts:

{a) rigid part

{b} permanently plastically-deformed part.
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The two parts are separated by the plastic wave front (rigid—plastic boundary) which
travels during the process of collision toward the rigid parts of the missiles. To develop
simple theory which will deal with deformation of our model, the following assumptions
were found necessary. The missiles are assumed to be of like material which exhibits a
rigid, perfectly-plastic behavior. This assumption allows the elastic strains, small in
comparison with the plastic ones, to be neglected, and also allows the rear part of the
missiles to be treated as undeformed during the process of impact. It is also assumed that
density remains constant in the plastic region, and, in order to deal with one-dimensional
theory, radial inertia is neglected.

3. PHYSICAL LAWS

A. Mass balance across plastic front

By denoting ¢}, and ¢, as the velocities of the plastic fronts relative to observers moving
with the particles in the j, states of the left and right missile respectively, and v* as the
common velocity of the plastically-deformed part (see Figs. 2 and 3(A)), relations are
arrived at which introduce transformation and refer to velocities relative to the motions
of the j, states of the missiles.

! r

_ .l 1 * N a4
Cj, = C—V; +0 ¢, = ¢, —v; +v¥ 3.1

The plastic wave fronts moving from X to X’ and Y to Y’, will advance in the media j, and j,
the distances respectively (see Fig. 2)
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F1G. 2. Moving plastic fronts between states.
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F1G. 3. (A) Deformed material (previous j-state); (B) Material elements being deformed during dt;
(C) Free body diagrams of rigid parts.

Therefore, the mass changes in the j, and j, states can now be expressed as

-
d”lj1 =

) ] l‘ r ro4qr r
—pj,Aj, dx;y dm}, = —p} A} dx
J14h J J1h 1 (3_3)

| Y | ! 1 ro o .r r r
dm;, = p;,A;,dx3 dmj, = pj,Aj, dx5.

By applying the laws of constant density and conservation of mass, dm;, +dm;, = 0, and
substituting (3.1) and (3.2) into (3.3), we derive expressions for the absolute speeds of the
plastic wave fronts. Thus

cl = (v, — V%) + 4,05, — )4}, — 45,)
¢y = (U, —v¥) + A3, — Vj, 4], — A}).

(34)

B. Momentum balance

Due to the motion of the plastic fronts, material is traversed during an incremental
time dt¢ and defines elements as shown in Fig. 3(B). The net forces are then calculated
as in Ref. [2].

fr=dml =)/t f7 = dm| (v],—0})/de (3.5)
However, the net forces and the areas are related to the stresses as follows
ft=—d A +o,4,,  fr =0} 45 +6,4],. (3.6)
Solving these equations with respect to the unknown areas yields
A, = (=f'+dh AL)el, A5, = ([T 54/, (3.7)
Since
o, =d, =0, o}, = o}, = o,
therefore
A, = —floy+ 4y, AL = [+ 4] (3.8)

The reaction force at the boundary is given by

F'= —fl4glA},  F = fr+a,4},. (3.9)
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C. Strain-area relation
The strains in the deformed material for an incompressible material are

d, = Ab/AL—1 &, = Ab/A5,—1. (3.10)

D. Rear part of missiles, impulse momentum law

As in Ref. [2] the rigid parts of missiles (see also Fig. 3(C)) are in state j, and are
subjected to forces

f* =44} ¥ =} 45 (3.11)

During an incremental time dt the missile’s ends x} and x7 shall move the distances
v! dt and v} dt. Therefore, the new positions x| and x7 are located

x| = xi+0! dt X, = x7+v; de. (3.12)
The length of the rigid parts are
dX' = xj—x¥ dX" = xj—x7 (3.13)
and their masses are then calculated
dM'! = p} 4% dX! dM" = p; A} dX". (3.14)
By applying the impulse-momentum law
dvl = o} A, JdM'  dvi = o}, A5, /dM” (3.15
and the impact velocities are then reduced to

vf = +dvt de o] = v +do} de (3.16)
The new coordinates of the plastic boundaries are calculated by using the relations
xj = xj+(ch+o¥)dt X} = xj+(c,+v¥)dr for j=23,... (3.17)
and the coordinates of the plane dividing the two missiles are computed by

x*¥ = x* 4% dt. (3.18)

4. METHOD OF ANALYSIS

The Direct Analysis method has been used to solve this problem. A discussion of this
method has been given in Refs. [6] and [7] and therefore will not be repeated. The process
begins by specifying the constants, the initial conditions, and marking out the passage of
time discretely. Then, the ground state of the missiles is defined, viz.

oi=0di=0, Aj=A4= A4,
vf =1} =l j=1
where

v; >0 v < 0.
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During the first incremental time dt the plastic wave fronts define two elements as
shown in Fig. 3(B). For these elements, one of the dynamical variables is decreased and
the levels or contours are moved through the elements as a function of time. The variable
used for this purpose may be arbitrarily chosen, e.g. strain, stress or velocity. In this paper
a sequence of decreasing velocities was introduced as independent variables.

if v§ and v} are current velocities of missiles, then

vhey = oh+dot Uiy = vi+dv

where dv' < 0 and dv” > 0 (|dv"| = |dv!|) are arbitrarily specified negative and positive
increments respectively, which will reduce the magnitude of the velocities of these elements.
Ultimately as the index j increases, the velocities will be approximately the same, depending
on the coarse increment dv” and dv' (v} = v; = v* boundary condition), for both elements.
When this happens the loading is terminated for this incremental time.

Actually two boundary conditions are to be satisfied at the interface, continuity of
velocity and continuity of reaction forces. The first condition, continuity of velocity, has
been discussed. The second condition, continuity of reaction forces, needs no special
arrangement in order to be satisfied for the case of missiles of equal cross sections and
like materials which are concerned in this paper. By investigating equations (3.6)—(3.9)
one can sec that the magnitude of F'is equal to the magnitude of F". During this process
the other dynamical variables (being related directly to the current velocities) are also
calculated by using the relations (3.1) to (3.18). This completes all the calculations at
time t. The next step is to increase the time by dt and repeat the calculations cyclically.
The motion and the process will be terminated when the velocities of the rigid parts of the
missiles (which are computed for every incremental time by using equation (3.16)) are
equal, i.e. v} = vy.

In the paragraph below the basic scheme of the method is listed. State j, is the ground
state (j, = j = 1), and state j, is the state of the portion of plastically-deformed material
which is adjacent to the plastic boundary; j, = j+1 where j is the current value of the
index.

Basic scheme of the method Remarks

L Ard a6, e, vh, 0, dv!, dv Given data

kn, dt, 6, po

2. mlom", AL, A, x4, X, From given data

ld=¢g=v=vi=xi=x}= Initialization of all quantities
g=ci=d, =d, =

4. ¢} = 0y, 0} = 0}, A} = A, A = Ay Specification of ground state
5 = Po, P = P

5 0 =0, vf =1} Specification of velocities of missiles
Vi1 = vi+dv’; vy = vj+dv” velocities, levels

6. ¢ = c,—vi +v*; ¢ = c,—v) +v* Law for velocity of plastic fronts
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Basic scheme of the method

Remarks

7. dx! = c§ de; dx" = ¢} dt Calculation of incremental displace-
ment of plastic front
8. dml = ptAldx}; dm] = pjA;dx; Mass change of j-state
9. cl, = [Aj+1(he  — VA — AD)+0h —0* Absolute wave speed
= [A}41(V]41 ')/(A;H A':)]+v'i —v*
10. &y = Ab/AS 1 —1; &5y = Ap/ASr — Strain—area law
1. fl'= @ —v) dmj/dt; fr= (0 =) dm}/dt Net forces on elements
120 by = (—fT+6t4h /ey New areas (plastic state)
j+1 = O;A;}/0;+1
r (f'+ l’Ar)/ r
13. F' =6l 1A  FF = —6fi 1 Afuy Reaction forces of missiles
<0 end loadin
14. if v} — v} [ nete & J Test for termination of loading
>0 continue loading
15, x) = xt +0l de; ) = +07 dt Displacements of free ends
16. dX' = xi—x}; dX" = xj—x} Lengths of undisturbed parts
17. dM' = plAl dX'; dM" = pjA;dX” Masses of undisturbed parts
18. dv} = dlAldi/dM'; dvy = o4} de/dM” Impulse momentum, rear parts
19. v} = v} +dvd ;v = v} +dv, New velocities of rear parts
20. x} = x} +(cm+v*) de; x5 = xj+(cy, +o*)de Displacement of plastic boundary
for i=2. )
21, x* = x¥4v*dt Displacement of plane dividing two
missiles
<0endi .
22, if v} — [ end impact ] Test for end of impact
>0 continue impact

The time ¢ is then increased by dt and we repeat the calculations cyclically.

5. RESULTS

Some thought has been given by experimenters to the development of a mutual missile
collision experimental arrangement. The practical difficulties are severe, because of
problems of timing and alignment. The benefits, however, are attractive because relative
impact velocities are greater by such an arrangement.

No direct experimental data are at present available for comparison here. However,
when the velocities and the masses of the missiles are equal to each other, the deformation
of each missile should be exactly the same as if it alone had impacted a rigid target.
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Therefore, it was decided to compare the results of this analysis with the available experi-
mental data of projectiles striking rigid targets. Figures 4 and 5 show Taylor-Whiffin and
Lee-Tupper projectiles, respectively, with different striking velocities as they would appear
in the case of a mutual impact. The dynamic yield stress for the Taylor and Whiffin projectile
was found to vary from 140,000 psi for impact velocity 1120 ft/sec to 180,000 psi for impact
velocity 2120 ft/sec. In the above comparisons the deformation of projectiles due to the
target deformation was eliminated. For the Lee and Tupper projectile, the dynamic yield
stress was found to be the same (282,000 psi) for all different impact velocities (see Ref. [4]).
The validity of the assumption that radial inertia is negligible has been verified by the
following comparison with the experimental data of Ballistic Research Laboratories.

LI o o 2 o o e e e i

ORIGINAL SHAPE OF PROJECTILES

DYNAMIC YIELD STRESS
140,000 psi

DYNAMIC YIELD STRESS
140,000 pst

|
\ L —-———CALCULATED DEFORMATION,
] THIS ANALYSIS

VELOCITY 1260 FT /SEC TESTR%%%JT_?QCRNG *

A
“ DYNAMIC YIELD STRESS

145,000 psi

VELOCITY 600 FT/SEC

DYNAMIC YIELD STRESS
180,000 psi
‘I

VELOCITY 2120 FT /SEC

FiG. 4. Collision of two deformable cylinders of equal mass and equal impact velocity.
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STRIKING VELOCITY « 644 fps

STRIKING VELOCITY = 875 fps

STRIKING VELOCITY = 916 fpa

STRIKING VELOCITY = 986 fps

FiG. 5. Lee and Tupper projectiles.

In this experiment, Graberek and Ricchiazzi {5] fired cylindrical slugs, 1-613 in. dia. and
6 in. long, at normal obliquity against an armor target. Figure 6 shows these slugs compared
with theoretical data of this analysis as they will appear in mutual impact. The dynamic
yield stress was found to be 120,000 psi for these cylindrical slugs.

Figure 7 shows the calculated results of the analysis for projectiles which have equal
velocities, and masses in the ratio ranging from 1:1 to 1:7. In the absence of experimental
data, a dynamic yield stress of 140,000 psi was assumed to be valid for all these cases.
*“Residual velocity” is the velocity of both missiles at the termination of impact.
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FIG. 6. BRL cylindrical slugs after test.

Figures 8 and 9 are X-T diagrams showing the motion of (a) free ends of missileé,
(b) rigid plastic boundaries, and (c) plastically-deformed part of the missiles for the cases
of mass ratio 1:2 and 1:7 respectively.

6. CONCLUSIONS

In this investigation a theoretical analysis was developed to determine the dynamic
yield stress, the deformation, and the kinematics of missiles in mutual impact. The results of
this analysis have been compared with experimental data for projectiles striking rigid
targets. This comparison was made by noting that when two missiles of the same mass and
the same velocity impact each other, the deformation of the missiles during and after impact,
must be the same as in the case when each of the missiles strikes a rigid target. Three
different experimental data have been used for comparison with the results of this analysis.
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F1G. 7. Theoretical results, this analysis, for missiles of unequal masses.
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FiG. 8. X-T diagram showing motion of (mass ratio 1:2): (a) The rigid-plastic boundaries; (b) The

First, G. I. Taylor and A. C. Whiffin’s experimental data for 0:312 in. dia. and 1 in. long
projectiles at launch velocities of 1120-2120 ft/sec was compared with the results of this
analysis and showed excellent agreement. Second, H. E. Lee and S. J. Tupper’s experimental
data for cylinders of nickel-chrome steel, 0-34 in. and 0-50 in. long fired at a hardened armor
plate was compared with results of this analysis, and it was found that the dynamic influence
on this material was very small. Third, some recent experimental data of BRL for large
diameter cylinders, 1-613 in. dia. and 6 in. long, was compared with this analysis and has
verified that the assumption of one-dimensional motion in plastic impact in this analysis

1000 Ft/Sec
2500

DEMETRIOS RAFTOPOULOS

1000 Ft/Sec

3500 4.000

Original  Length

\

Y/Reor Edge (X))

|
|
|
Rigid- Plastic Boundurie#\u
i

| ‘ /
\ Reor Edge (X[)
// \ iy
\ /
N; \ /
/

i‘% \ }
i |
Plane Dividing | | \ )

The Missiles\’\u \ (

;o
3.333\/ P \

3550 3728 3.866
o0 \3rey
1

Length

MASS RATIO 1:2

plane dividing the two missiles; (c) The rear ends of missiles.

gave remarkable agreement even in the case of large-diameter slugs.
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F1G. 9. X-T Diagram showing motion of {mass ratio 1:7): (a) The rigid—plastic boundaries; (b) The
plane dividing the two missiles; (¢) The rear ends of missiles.

Results of this analysis for unequal mass missiles were not compared since no experi-
mental data has been found in literature. However, care was exercised to investigate that the
total momentum of the system remained constant before, during, and after impact. In
Fig. 7 it can be seen that the net momentum after impact was found to be the same as it was
before impact. Also, it must be pointed out that the reaction force between the missiles was
calculated, and was found to be equal and opposite during the process of impact. Thus,
Fl=F.

In the case of Fig. 9 which shows total plastic deformation in a time interval of 30 usec,
justification for neglecting elastic effects might not be necessary. That is, if an elastic wave
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was assumed along with a plastic one a time t = 2dX'/e, ~ 35 usec is needed for a single
interaction of the elastic precursor in the longer missile. However, when shorter missiles
are considered and an elasto—plastic analysis is contemplated an interaction of waves in
the longer missile (see Fig. 8, t = 2dXY/e, ~ 10 usec) would take place before impact is
ended. Such an analysis is more difficult and needs different consideration than the one
offered in this work. Therefore, it must be pointed out that in this paper by assuming a
rigid, perfectly plastic model we have neglected the elastic precursors in the rigid parts of
the missiles. In addition, the elastic wave which would be generated in the plastically-
deformed part of missiles is also neglected. These assumptions were exercised and justified
in Ref. [2] as well.

Further current work will be directed towards extension for missiles of different
material, different cross-sectional area and different launch velocities. Generally, the
analysis herein can be applied directly towards the study of penetration by realizing that if
initially one of the projectiles has zero launch velocity, it can be considered to be the target
of the other projectile.
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Abcrpakt—Hacrosuuast pabora passusaer Teopuio 60msoit nAACTHYCCKOR nedOpMaLMU METANTHYECKHX,
HUAHHAPHYECKHX, TUTOCKO DaKOHYEHBIX PAKET, NOMAAAIOWMX APYT B APYIA € 3aJaHHOR CKOPOCTHIC YAapa.
Pe3ynbTarhi CPaBHUBAIOTCA C 3KCHEPHMEHTANLHEIMH JAHHBIMHU.

Ipynnsl CpaBHMTENBHBIX MCCHAEAOBAHHM, MCTONLIYEMBIX /U1 CDABHEHHA C HACTOALUUM METOAOM
CIHERYIOLIHE!

(a) Ax. W. Teitnop n A, 1. Yudduu
(@) 3.1. Jiu, C. T, Tannep, A. I, Yuddux u I, JI. 1. [Tor
(») H. O3Bunc, L. I'paGepex, A. PadTonynoc u A. Pryduaiiy.

Ha ocHoBe 1pepncTaBneHHBIX CPaBHEHHIX pe3y/LTaTel, MOJNYYEHHBIE B 3TOl pabore, YKa3blBaKOT, 4YTO
Teopust omuckBaeT Gonpluge NedopManuu BHILLEYOMSIHYTEIX PaKeT 0o/lee TOYHO AJIA HA3KHX M CPEIHUX
CKOpoCTeit.



